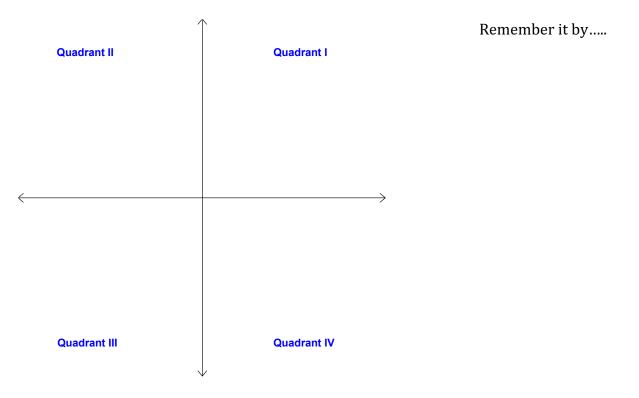

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sinθ				
cosθ				

Using your calculator, find the sine and cosine of the following angles:


Now, fill in the coordinates of these quadrantal angles in the chart below.

Is there some sort of relationship between sine and cosine and the x and y coordinates of these four angles?

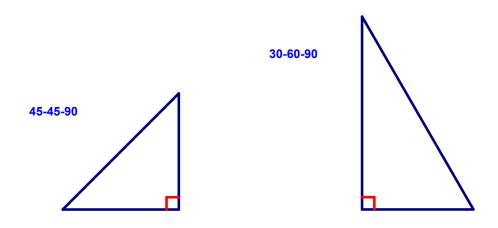
$$(x, y) = (,)$$

Signs of Trig Functions

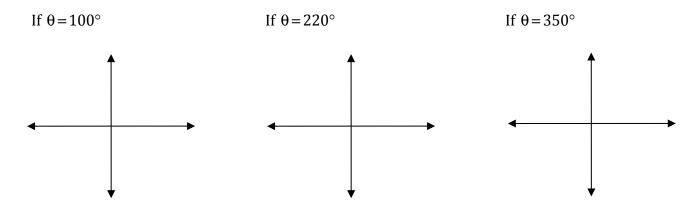
Examples:

1) State the quadrant in which θ lies:

a. sin $\theta > 0$ and tan $\theta < 0$

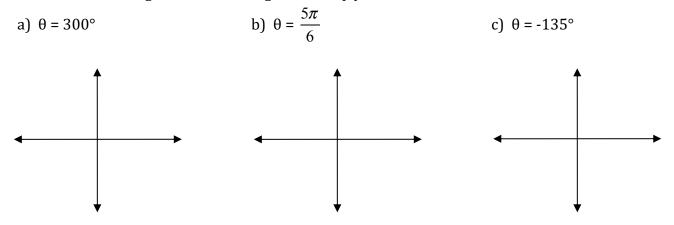

b. sec $\theta > 0$ and cot $\theta < 0$

2) If sin θ = 0.5358, find two values for θ (0° ≤ θ < 360°). Round to the nearest tenth of a degree.


3) If $\cos \theta = 0.8164$, find two values for θ ($0^{\circ} \le \theta < 360^{\circ}$). Round to the nearest tenth of a degree.

Reference Angles

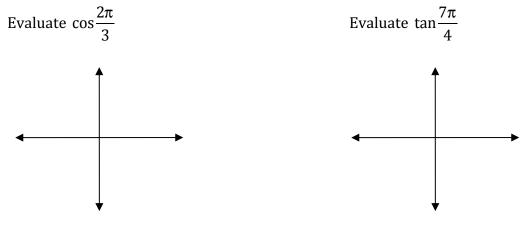
RECALL: Special Right Triangles:



Reference Angle – θ' - an angle made with the x-axis that is used to create an acute right triangle we can use to analyze trig functions

Examples:

Find the reference angle θ' . Draw a diagram to help you.


Reference angles are useful because they enable us to evaluate the trig functions of many different "special" angles.

Trig Functions of Real Numbers

To find the value of a trig function of any "special" angle follow the following steps:

- 1. Draw the angle in standard position
- 2. Determine the reference angle θ' (always made with the x-axis)
- 3. Find the function value based on the sides of the appropriate special right triangle
- 4. Depending on the Quadrant in which θ lies, affix the appropriate sign (positive or negative) to the function value

Examples:

More Examples:

1) If θ is in Quadrant II and $\cos\theta = \frac{-7}{25}$, what is $\sin\theta$?

2) If
$$\cos\theta = \frac{-\sqrt{3}}{2}$$
 and θ is in Quadrant III, what is $\sin\theta$?

3) If θ is in standard position and the point (-3, -6) is on the terminal side, find the six trigonometric functions of θ .

4) If θ is in standard position and the point $\left(\frac{-8}{17}, \frac{15}{17}\right)$ is on the terminal side, find the six trigonometric functions of θ .

- 5) Evaluate the following trig functions:
 - a) $\sin 5\pi$

b)
$$\cos\left(\frac{-9\pi}{4}\right)$$

6) If θ is in quadrant III and $\cos\theta = -\frac{1}{2}$, find:

a) sin θ

b) tan θ

c) csc θ

Homework:

4.4 day 1: p. 318 #11-14, 30, 33, 39, 42, 45, 48, 51, 54 4.4 day 2: p. 318 #1, 6, 7, 17, 21, 59, 61, 81, 83, 92, 93